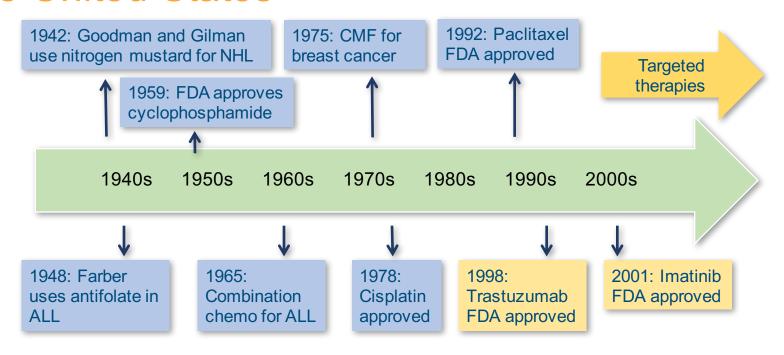
New Drug Updates in Solid Tumors

Patrick J. Kiel, PharmD, BCPS, BCOP

Clinical Pharmacy Specialist-Hematology/Oncology, Precision Genomics Indiana University Simon Cancer Center-IU Health

Learning Objectives

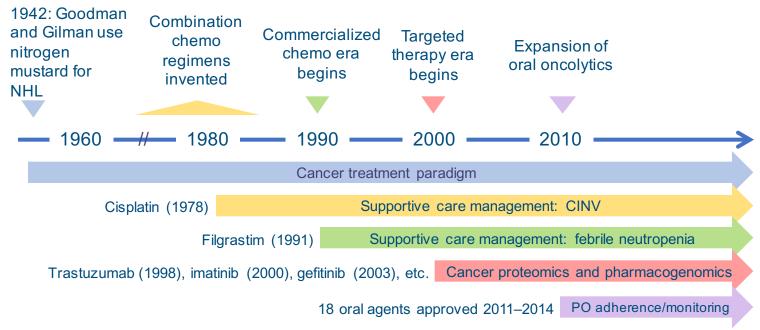
- Discuss the pharmacology and indications of medications approved in the year 2017–2018 for the management of patients with solid tumors
- Recall the pivotal clinical trial data considered by the FDA when approving new oncolytics
- Identify the signs and symptoms of serious or life-threatening adverse effects of newly approved oncology drugs
- Describe the impact of these agents in advanced practice



Financial Disclosure

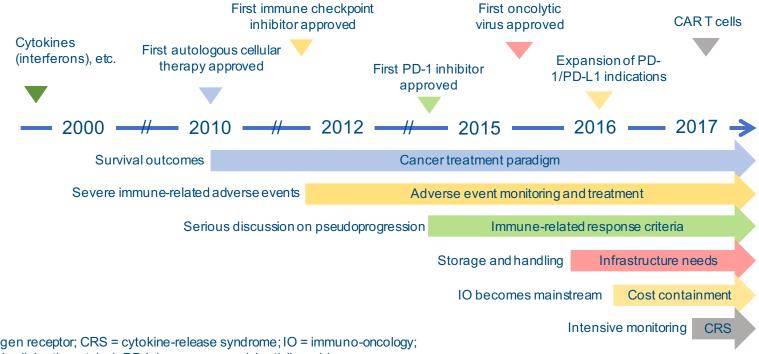
Dr. Kiel has served on speakers bureaus for Celgene, Genentech, Gilead, and Takeda; he has received consulting fees from Takeda.

History of Cancer Drug Approvals in the United States



ALL = acute lymphoblastic leukemia; CMF = cyclophosphamide, methotrexate and fluorouracil; FDA = US Food and Drug Administration; NHL = non-Hodgkin lymphoma.

Adapted from Chabner BA, et al. Nat Rev Cancer 2005;5:65-72.


Drug Approvals Impact the Practice Paradigm

CINV = chemotherapy-induced nausea and vomiting

Era of Immuno-Oncology

New Drug Approvals: Dec 2017 to Sept 2018

Novel Mechanism *None*

Biosimilar Approval

Generic	Brand	Approval Date	
Trastuzumab-dkst	Ogivri	December 1, 2017	

Established Mechanism

Generic	Brand	Approval Date
Apalutamide	Erleada	February 14, 2018
Encorafenib	Braftovi	June 27, 2018
Binimetinib	Mektovi	June 27, 2018

*

Generic	Brand	Event Description	Event Description	Date
Nivolumab	Opdivo	New indication	mSCLC following platinum and 1 other line	August 16, 2018
Nivolumab	Opdivo	New indication	With ipilumumab in previously treated MSI-H or dMMR CRC	July 10, 2018
Nivolumab	Opdivo	New indication	With ipilumumab in intermediate-poor risk untreated RCC	April 16, 2018
Nivolumab	Opdivo	New indication	Adjuvant treatment LN + or metastatic resectable melanoma	Dec 20, 2017
Nivolumab	Opdivo	New dosing	Every-4-week dosing	March 5, 2018
Pembrolizumab	Keytruda	New indication	Metastatic PD-L1 cervical cancer	June 12, 2018
Pembrolizumab	Keytruda	New indication	Combination with platinum/pemetrexed first-line NSCLC	August 20, 2018
Durvalumab	Imfinzi	New indication	Stage III NSCLC	Feb 16, 2018

CRC = colorectal; dMMR = mismatch repair deficient; MSI-H = microsatellite instability high; NSCLC = non-small call lung cancer; SCLC = small cell lung cancer.

US Food and Drug Administration, Hematology/Oncology (Cancer) Approvals & Safety Notifications, https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm279174.htm. Accessed September 2018

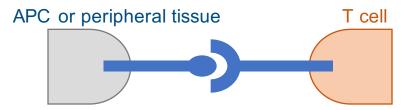
Generic	Brand	Event Description	Event Description	Date
Abemaciclib	Verzenio	New indication	With AI as initial therapy in post-menopausal women with breast cancer. HR+, HER2-	Feb 26, 2018
Ribociclib	Kisqali	New indication	With AI as initial therapy in pre/post-menopausal women with breast cancer. HR+, HER2-	July 18, 2018
Alectinib	Alecensa	New indication	ALK+ mNSCLC	Nov 6, 2017
Sunitinib	Sutent	New indication	Adjuvant therapy for high risk RCC following nephrectomy	Nov 16, 2017
Olaparib	Lynparza	New indication	BRCA-mutated metastatic breast cancer	Jan 12, 2018
Rucaparib	Rubraca	New indication	Maintenance treatment in ovarian following a ORR with platinum based therapy	April 6, 2018
Lenvatinib	Lenvima	New indication	First-line unresectable hepatocellular	Aug 16, 2018
Cabozantinib	Cabometyx	New indication	First-line advanced RCC	Dec 19, 2017

AI = aromatase inhibitor; ALK = anaplastic lymphoma kinase; HR = hormone receptor; HER2 = human epidermal growth factor receptor 2; RCC = renal cell carcinoma.

Generic	Brand	Event Description	Event Description	Date
Dabrafenib/Trametinib	Tafinlar/Mekinist	New indication	Anaplastic thyroid cancer BRAF V600E	May 4, 2018
Dabrafenib/Trametinib	Tafinlar/Mekinist	nist New indication Adjuvant treatment in BRAF-mutated melanoma		April 30, 2018
Alectinib	Alecensa	New indication	First-line ALK+ NSCLC	Nov 6, 2018
Afatinib	Gilotrif	New indication	First-line EGFR mutated NSCLC	Jan 12, 2018
Osimertinib	Tagresso	New indication	First-line EGFR mutated NSCLC	April 19, 2018
Abiraterone	Zytiga	New indication	Metastatic high-risk castration sensitive prostate cancer, with prednisone	Feb 7, 2018
Enzalutamide	Xtandi	New indication	Non-metastatic castrate-resistant prostate cancer	July 13, 2018

Generic	Brand	Event Description	Event Description	Date
Pertuzumab			In combination with trastuzumab as adjuvant therapy in HER2+ early breast cancer	Dec 20, 2017
FoundationOne CDx			Next-generation sequencing diagnostic for 324-gene panel in solid tumors	Nov 30, 2017

Immune Checkpoint: Mechanism

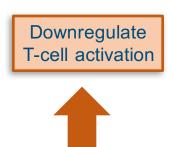

"Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage." – Pardoll, 2012

Two immune checkpoints with current therapeutic applications:

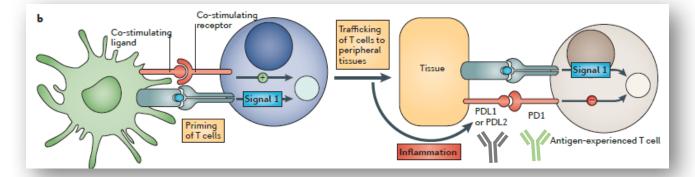
- CTLA-4
 - Downregulates T-cell function
 - Essential for normal immunologic homeostasis
- PD-1
 - Normal role is to limit autoimmunity during an inflammatory response via dampening T cells in peripheral tissues
 - Major immune resistance mechanism in tumors

APC = antigen-presenting cell; CTLA-4 = cytotoxic T-lymphocyte-associated antigen 4.

Many immune checkpoint receptors and ligands have been identified to be selectively upregulated in cancer


- Generally, receptors and ligands that regulate T-cell activation are typically NOT overexpressed in cancers
- Generally, receptors and ligands that regulate T-cell effector function (i.e., recognizing antigen in peripheral tissues) typically ARE overexpressed in cancers

Pardoll DM. Nat Rev Cancer 2012;12:252-64.

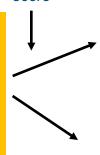


Targeting Immune Checkpoints

- PD-1 is highly expressed on T-reg cells and interacts with a PD-ligand (e.g., PD-L1) to downregulate T cells
- Chronic antigen → high PD-1 expression and T-cell anergy
- Inhibition of PD-1 or PD-L1 enhances T-cell effector function in the tumor microenvironment

PD-1 PD-L1

Approved Immunotherapy


- 11/2015 nivolumab, based on CheckMate 025
 - Advanced RCC for patients who have received prior antiangiogenic therapy
 - Dose: 240 mg IV over 30 minutes every 2 weeks, OR 480 mg IV over 30 minutes every 4 weeks
- 4/16/18 nivolumab and ipilimumab in combination, based on CheckMate 214
 - First-line treatment of intermediate- or poor-risk advanced renal cell carcinoma
 - Dosing
 - Nivolumab 3 mg/kg, followed by ipilimumab 1 mg/kg, on the same day every 3 weeks for 4 doses
 - Followed by nivolumab 240 mg every 2 weeks or 480 mg every 4 weeks

Ipilimumab/Nivolumab vs. Sunitinib in First-Line Clear Cell Advanced Renal Cell Carcinoma, CheckMate 214

Stratified by International
Metastatic Renal Cell
Carcinoma Database
Consortium (IDMC) prognostic
score

Treatmentnaive patients with metastatic or advanced clear-cell RCC (N = 1,096)

Nivolumab 3 mg/kg plus
Ipilimumab 1 mg/kg IV every 3
weeks x 4, followed by
nivolumab 3 mg/kg every 2 weeks
(n = 550)

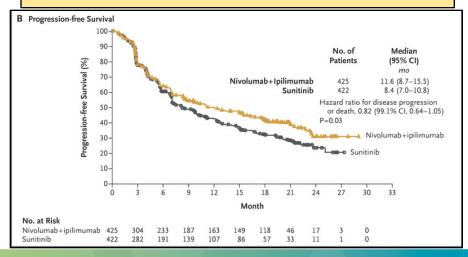
Sunitinib 50 mg daily for 4 weeks on and 2 weeks off (6-week cycle) (n = 546) Response for IDMC intermediate/poor risk Minimum follow-up: 17.5 months

%	ORR	CR	PR	SD	PD
Nivo + Ipi (n = 425)	42	9	32	31	20
Sunitinib (n = 422)	27	1	25	45	17

Treatment continued until progression or unacceptable toxicity

CR = complete response; ORR = overall response rate; PD = progressive disease; PR = partial response; RCC = renal cell carcinoma; SD = stable disease.

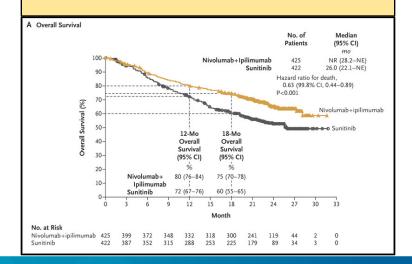
Motzer RJ, et al. N Engl J Med 2018;378:1277-1290


Nivo/Ipi Significantly Improved Overall Survival for IMDC Intermediate/Poor-Risk RCC

Median Progression-Free Survival

Nivo + Ipi (n = 425): 11.6 mo

Sunitinib (n = 422): 8.4 mo


Median duration of response not reached

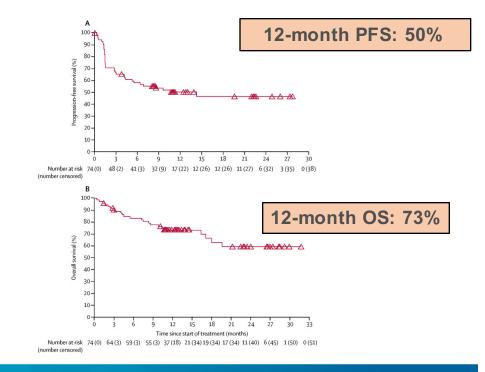
Median Overall Survival

Nivo + Ipi (n = 425): Not reached

Sunitinib (n = 422): 26 mo

Motzer RJ, et al. N Engl J Med 2018;378:1277-1290

Nivolumab

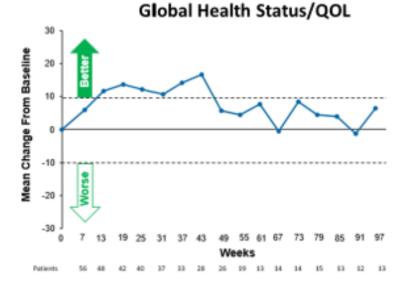

- FDA approved for
 - Adult and pediatric (12 years and older) patients with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan
- Based on data from CheckMate 142
- Dose: 240 mg IV over 30 minutes every 2 weeks until disease progression or unacceptable toxicity

CheckMate 142: Nivolumab Monotherapy for dMMR/MSI-H Metastatic Colorectal Cancer

- 74 patients
- Nivolumab at 3 mg/kg q2wk
- Median follow-up: 12 months
 - Objective response: 31%
 - Disease control: 69%
 - Median time to response: 2.8 months (range 1.4–3.2)
 - Median duration of response: not reached
 - Median PFS: 14.3 months
- Responses were seen irrespective of PD-L1 status, Lynch syndrome, or KRAS and BRAF mutations.

dMMR/MSI-H = DNA mismatch repair deficient/microsatellite instability-high

Overman, MJ, et al. *Lancet* 2017;18:1182–1191.

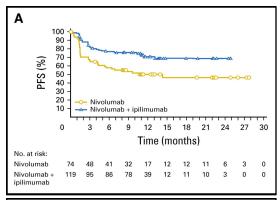


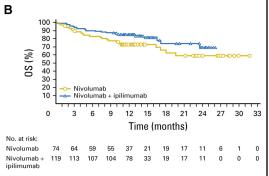
Patient-Reported Outcomes and Adverse Effects

Any grade: 70%

Grade 3/4: 20%

- Most adverse events were easily managed
- As early as week 13, clinically meaningful improvements in quality of life


European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30



Nivolumab/Ipilimumab for dMMR/MSI-H Metastatic Colorectal Cancer, CheckMate 142

- 119 patients
- Nivolumab at 3 mg/kg plus ipilimumab at 1 mg/kg once every 3 weeks (4 doses) followed by nivolumab at 3 mg/kg once every 2 weeks
- Median follow-up: 13.5 months
 - Objective response: 55%
 - Disease control: 80%
 - Median time to response: 2.8 months (range 1–14)
 - Median duration of response: not reached
 - Median PFS: not reached

12-month PFS Nivo: 50% Nivo/lpi: 71%

12-month OS Nivo: 73% Nivo/Ipi: 85%

Overman MK, et al. JCO 2018;*36:*773–779

CheckMate 142: Nivolumab/Ipilimumab Cohort Adverse Events

 Combination therapy had similar adverse events, but more likely to be grade 3/4 than monotherapy

Any grade: 73%

• Grade 3/4: 32%

 13% of patients discontinued therapy due to adverse events

 QOL improved with combination therapy similar to monotherapy

	<u> </u>	NO. (%)	
TRAE	Grade 1-2	Grade 3	Grade 4
Any TRAE	49 (41)	32 (27)	6 (5)
Diarrhea*	24 (20)	2 (2)	0
Fatigue*	19 (16)	2 (2)	0
Pruritus*	18 (15)	2 (2)	0
Pyrexia*	18 (15)	0	0
Increased AST*	8 (7)	9 (8)	0
Hypothyroidism*	15 (13)	1 (1)	0
Nausea*	14 (12)	1 (1)	0
Increased ALT*	6 (5)	8 (7)	0
Rash*	11 (9)	2 (2)	0
Hyperthyroidism*	13 (11)	0	0

No (%)

TRAE = treatment-related adverse event

Overman MK, et al. JCO 2018;36:773-779

KEYNOTE-047: Carboplatin/Pemetrexed/Pembrolizumab

Stratified by PD-L1 tumor proportion score (≥1% vs. <1%)

Treatmentnaive patients with metastatic NSCLC

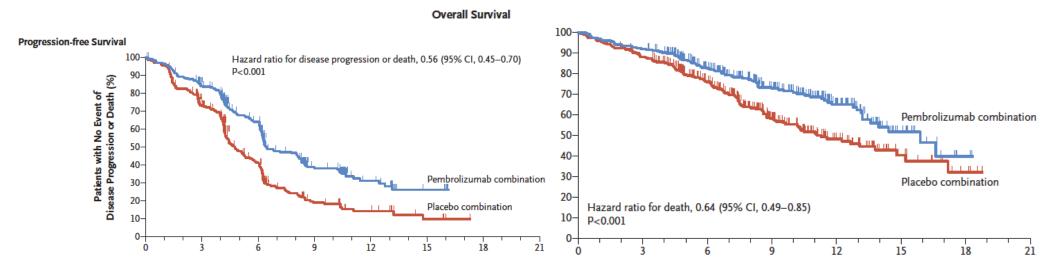
Carboplatin AUC 6 on day 1
Paclitaxel 200 mg/m² day 1, 8, 15 (4 cycles)
Pembrolizumab 200 mg
Every 3 weeks
(n = 278)

Carboplatin AUC 6 on day 1
Paclitaxel 200 mg/m² day 1, 8, 15 (4 cycles)
Placebo
Every 3 weeks
(n = 281)

Co-Primary Endpoint: OS and PFS

Baseline characteristics:

Median age 65
7% never-smoker
97% squamous
63% ≥1% PD-L1


Pembrolizumab treatment continued until progression or unacceptable toxicity

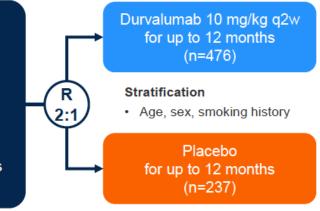
AUC = area under the concentration-time curve; NSCLC = non-small cell lung cancer.

Paz-Ares L, et al. NEJM 2018; DOI: 10.1056/NEJMoa1810865

KEYNOTE-047 Primary Outcome Results

Paz-Ares L, et al. NEJM 2018; DOI: 10.1056/NEJMoa1810865

Durvalumab After Radiation in Stage III NSCLC

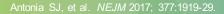

Study objective

 To evaluate the anti-PD-L1 durvalumab, in stage III, locally advanced, unresectable NSCLC

Key patient inclusion criteria

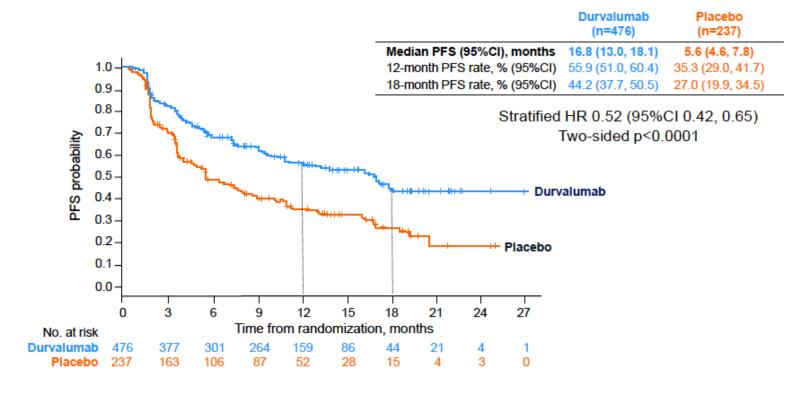
- Stage III, locally advanced, unresectable NSCLC
- Not progressed following platinumbased concurrent chemoradiation therapy (≥2 cycles)
- WHO PS 0-1
- Estimated life expectancy ≥12 weeks

(n=713)



Co-primary endpoints

• PFS (BICR, RECIST v1.1), OS


Secondary endpoints

· ORR (BICR), DoR (BICR), safety, PROs

Progression-Free Survival

Antonia SJ, et al. NEJM 2017; 377:1919-29.

General Safety: PD-1/PD-L1 Comparison

	Avel	umab	Durva	lumab	Pembrol	lizumab	Nivol	umab	Atezoliz	zumab
Adverse Reaction	All Grades	Grades 3/4								
Fatigue	50%	2%	39%	6%	28%	< 1%	17%	2%	52%	6%
Infusion reaction	25%	< 1%	1.8%	< 1%	< 1%				1.7%	
Arthralgia	16%		6%		18%	< 1%			14%	1%
Diarrhea	23%		13%	1%	26%		9%	2%	18%	1%
Rash	22%		11%	1%	24%	< 1%	21%	< 1%	15%	< 1%
Decreased appetite	20%	2%	19%	1%	16%	< 1%	8%		26%	1%
Dyspnea	11%		13%	2%	11%	< 1%	4%	1%	16%	4%
Hypertension	13%	6%								

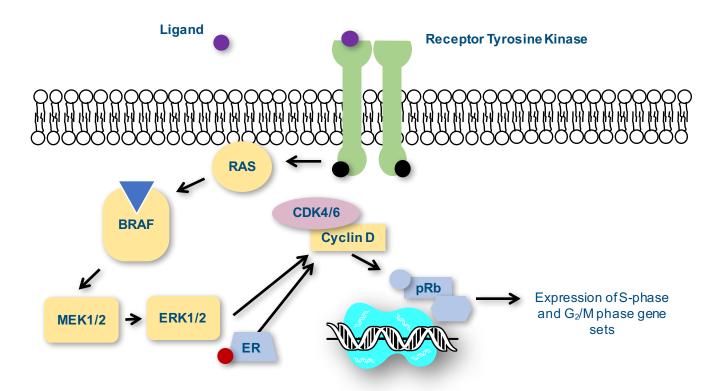
Bavencio (avelumab) prescribing information, https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761049s000lbl.pdf; Keytruda (pembrolizumab) prescribing information, https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/125514s012lbl.pdf; Opdivo (nivolumab) prescribing information, https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125554lbl.pdf; Imfinzi (durvalumab) prescribing information, https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761069s000lbl.pdf; Tecentriq (atezolizumab) prescribing information, https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/761034s000lbl.pdf.

New Drug Approvals: Dec 2017 to Sept 2018

In combination with an aromatase inhibitor for pre/perimenopausal women with HR-positive, HER2-negative advanced or metastatic breast cancer, as initial endocrine-based therapy.

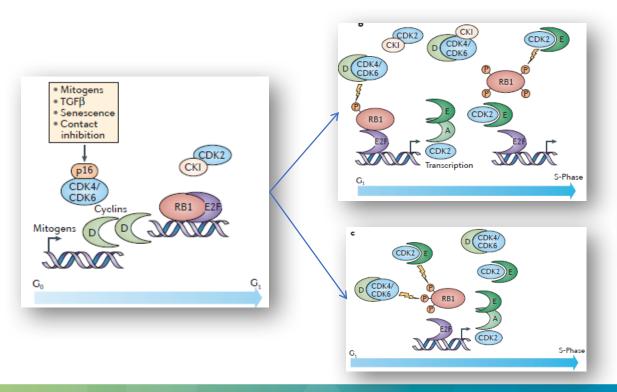
In combination with fulvestrant for postmenopausal women with HR-positive, HER2-negative advanced or metastatic breast cancer, as initial endocrine-based therapy or following disease progression on endocrine therapy.

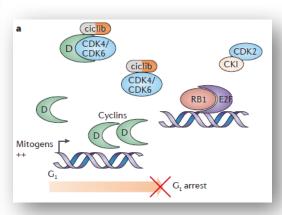
CDK4/6 Inhibitor


Generic	Brand	Approval Date
Ribociclib	Kisqali	March 13, 2017
Abemaciclib	Verzenio	Feb 26, 2018

In combination with an aromatase inhibitor as initial endocrine-based therapy for postmenopausal women with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced or metastatic breast cancer.

US Food and Drug Administration, Hematology/Oncology (Cancer) Approvals & Safety Notifications, https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm279174.htm. Accessed September 2018


Role of CDK4/6 in the Cell Cycle



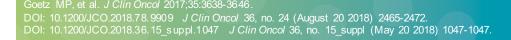
Adapted from VanArsdale T, et al. Clin Cancer Res 2015;21:2905-10.

Role of CDK4/6 in the Cell Cycle

CDK4/6 inhibition leads to G₁ arrest

Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Clinical Oncology. O'Leary B, et al. Nat Rev Clin Oncol 2016;13:417-30, copyright 2016.

Comparison of CDK4/6 Inhibitors


	Abemaciclib	Palbociclib	Ribociclib
CDK activity	4, 6, and 9	4 and 6	4 and 6
CDK selectivity	CDK4: 9-fold	Equal	CDK4: 5-fold
Cycle	Continuous	3 week on, 1 week off	3 week on, 1 week off
Frequency	Twice daily	Once daily	Once daily
Dose	150–200 mg	125 mg	600 mg
Toxicity profile Bone marrow Gastrointestinal	++ +++	+++	+++
Drug interactions	CYP3A	CYP3A	CYP3A

Ibrance (palbociclib) prescribing information, https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/207103s000lbl.pdf; Kisqali (ribociclib) prescribing information, https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209092s000lbl.pdf; Chen P, et al. *Mol Cancer Ther* 2016;15:2273-81.

CDK4/6 Clinical Trial Updates

Outcome	MONALEESA-3 (n = 726)	MONALEESA-7 (n = 495)	MONARCH 3 (n = 493)
Indication	Ribociclib/fulvestrant in post-menopausal 1st line	Ribociclib/AI in pre/peri-menopausal 1st line (NOT with tamoxifen)	Abemaciclib/AI in post-menopausal 1st line
Comparator	Fulvestrant/placebo	NSAI or tamoxifen/goserelin	Letrozole or anastrozole
Progression-free survival Median HR	20.5 vs 12.8 months (0.593, 0.48–0.732)	27.5 vs. 13.8 months (0.569, 0.436–0.743)	28.2 vs 14.8 months (0.54, 4.418–0.698)
Overall survival Median HR	Not available	Not available	Not available

Safety: Abemaciclib vs. Ribociclib vs. Palbociclib General

Ribociclib

Abemaciclib

Palbociclib

Adverse Reaction
Fatigue
Nausea
URI
Diarrhea
Arthralgia
Stomatitis
Abdominal pain
Decreased appetite

Grade 1/2	Grade 3	Grade 4
37%	2%	
29%		
19%	< 1%	
19%		
13%	< 1%	
11%	< 1%	
7%	1%	
12%	1%	

Grade 1/2	Grade 3	Grade 4
37%	3%	
42%	3%	
11%		
73%	13%	
11%	< 1%	
15%	< 1%	
33%	3%	
25%	1%	

Taibociciib		
Grade 3	Grade 4	
2%		
< 1%		
< 1%		
< 1%		
< 1%		
	Grade 3 2% < 1% < 1% < 1%	

With:

Letrozole

Fulvestrant

Fulvestrant

Sledge GW, et al *J Clin Oncol* 2017;35:2875-84; Cristofanilli M, et al. *Lancet Oncol* 2016;17:425-39; Turner NC, et al. *N Engl J Med* 2015;373:209-19.

Safety: Abemaciclib vs. Ribociclib vs. Palbociclib **Laboratory Abnormalities**

Adverse Reaction	
Neutropenia	

Anemia

Thrombocytopenia

QT prolongation

Increased ALT

Increased creatinine

Hypokalemia

Hyponatremia

Febrile neutropenia

Ribociclib

Grade 1/2	Grade 3	Grade 4
14%	50%	10%
17%	< 1%	< 1%
28%	1%	< 1%
3%	< 1%	
36%	8%	2%
19%	1%	
9%	1%	1%
	< 1%	

Abemaciclib

Grade 1/2	Grade 3	Grade 4
20%	24%	3%
22%	7%	< 1%
14%	2%	1%
9%	4%	< 1%
11%	1%	
27%	7%	< 1%
31%		
	< 1%	

Palhociclib

	D	
Grade 1/2	Grade 3	Grade 4
16%	55%	10%
25%	3%	
19%	2%	1%
	< 1%	
4%	2%	
	< 1%	
1%	1%	
	1%	

Fulvestrant Letrozole With: **Fulvestrant**

Sledge GW Jr, et al. J Clin Oncol 2017;35:2875-84; Cristofanilli M, et al. Lancet Oncol 2016;17:425-39; Turner NC, et al. N Engl J Med 2015;373:209-19; Kisgali (ribociclib) prescribing information, https://www.accessdata.fda.gov/drugsatfda docs/label/2017/209092s000lbl.pdf; Ibrance (palbociclib) prescribing information, https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/207103s000lbl.pdf; Verzenio (abemaciclib) prescribing information, https://www.accessdata.fda.gov/drugs.atfda_docs/label/2017/208716s000lbl.pdf.

CDK4/6 Inhibitor Special Monitoring

Adverse Reaction	Ribociclib	Abemaciclib	Palbociclib
QT interval prolongation	X		
Hepatic toxicity	X	X	X
Neutropenia	X	X	X
Infections			X
Diarrhea		X	
Venous thromboembolism		X	

QT interval prolongation: Monitor ECGs and electrolytes prior to treatment initiation; repeat ECGs at around day 14 of cycle 1 and beginning of cycle 2 and as clinically indicated. Monitor electrolytes at the beginning of each cycle for 6 cycles and as clinically indicated.

Hepatotoxicity: Perform LFTs before initiating treatment, and monitor LFTs every 2 weeks for the first 2 months, monthly for the next 2 months, and as clinically indicated.

Neutropenia: Monitor CBC prior to the start of therapy, every 2 weeks for the first 2 months, monthly for the next 2 months, and as clinically indicated.

Venous Thromboembolism: Monitor for signs and symptoms of thrombosis and pulmonary embolism and treat as medically appropriate.

Diarrhea: Instruct patients at the first sign of loose stools to initiate antidiarrheal therapy, increase oral fluids, and notify their healthcare provider.

CBC = complete blood count; ECG = electrocardiography; LFTs = liver function tests.

Sledge GW Jr, et al. *J Clin Oncol* 2017;35:2875-84; Cristofanilli M, et al. *Lancet Oncol* 2016;17:425-39; Turner NC, et al. *N Engl J Med* 2015;373:209-19; Kisqali (ribociclib) prescribing information, https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209092s000lbl.pdf; Ibrance (palbociclib) prescribing information, https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/207103s000lbl.pdf; Verzenio (abemaciclib) prescribing information, https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208716s000lbl.pdf.

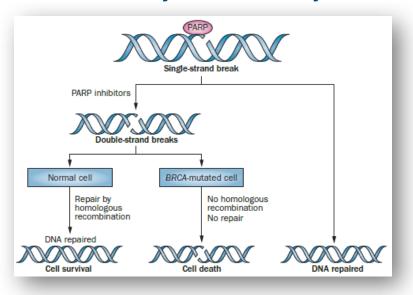
CDK4/6 Inhibitors' Place in Therapy

	Newly Diagnosed, Metastatic, HR+ <i>HER2</i> -, Postmenopausal (No Chemo)	Previously Treated with Endocrine Therapies	Previously Treated with Endocrine Therapies and Chemotherapy
First line	AI + palbociclib AI + ribociclib AI + abemaciclib	AI	AI
Second line	AI + everolimus	Fulvestrant + palbociclib Fulvestrant + abemaciclib Fulvestrant + ribociclib	Fulvestrant Tamoxifen
Third line	Tamoxifen/fulvestrant	AI + everolimus Tamoxifen	Abemaciclib (single agent)

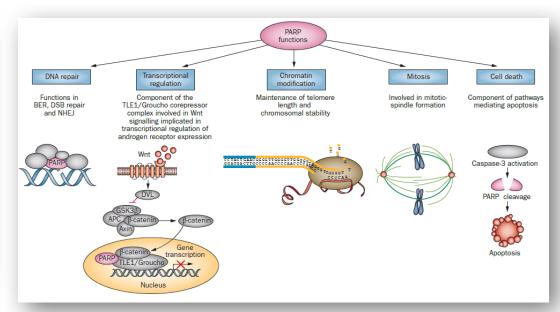
NCCN Clinical Practice Guidelines in Oncology, Breast Cancer, v1.2018, https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf.

New Drug Approvals: Dec 2017 to Sept 2018

PARP inhibitor


In patients with a deleterious or suspected deleterious germline BRCA-mutated (gBRCAm), HER2-negative metastatic breast cancer who have been treated with chemotherapy either in the neoadjuvant, adjuvant, or metastatic setting.

Generic	Brand	Approval Date
Olaparib	Lynparza	Jan 12, 2018



Pharmacology of PARP Inhibition

Role in Synthetic Lethality

Other Functions of PARP

Reprinted with permission from Macmillan Publishers Ltd: Sonnenblick A, et al. Nat Rev Clin Oncol 2015;12:27-41, copyright 2015.

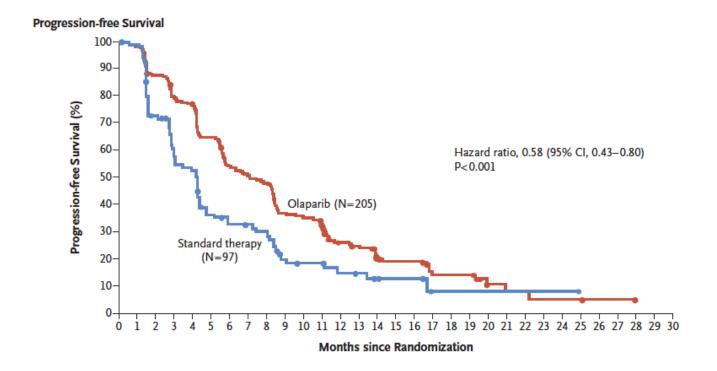
Phase III OlympiAD, Olaparib in Metastatic Breast Cancer, Germline Mutated

Metastatic
HER2HR+/No more than 2 lines
of chemotherapy
At least 1 hormonal
therapy

Standard of care choice:

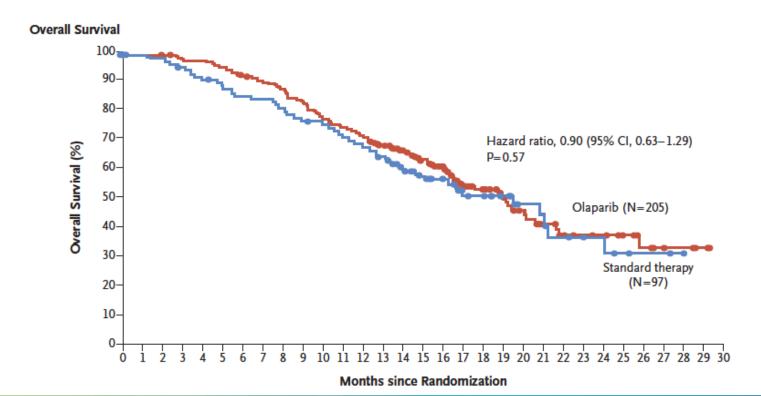
Capecitabine 2,500 mg/m 2 /D x 14D of a 21D cycle Eribulin 1.4 mg/m 2 on D1 and D8 every 21D Vinorelbine 30 mg/m 2 D1 and D8 every 21D (n = 97)

≈50% BRCA1, HR+


Olaparib 300 mg po BID (n = 205)

Primary endpoint: PFS

Robson M, et al. NEJM 2017;377:523-33.


OlympiAD Progression-Free Survival

Robson M, et al. *NEJM* 2017;377:523-33.

OlympiAD Overall Survival

PARP Inhibitor Safety: General

D.	100	100	KI b
		106	
	,		

	-
Grades 1-4	Grades 3/4
77%	11%
77%	5%
32%	3%
34%	3%
10%	
18%	2%
17%	
7%	< 1%
39%	3%
21%	0.5%

N	Ira	an	12	rı	h
	1119	чμ	u		V

Grades 1-4	Grades 3/4
57%	8%
74%	3%
33%	2%
20%	< 1%
NR	
13%	< 1%
26%	< 1%
19%	< 1%
10%	
20%	1%

Olaparib

Grades 1-4	Grades 3/4		
66%	8%		
64%	3%		
43%	4%		
31%	1%		
26%			
NR			
21%	< 1%		
22%			
16%			
NR			

NR = not reported; URI = upper respiratory infection; UTI = urinary tract infection.

Adverse Reaction

Fatigue/Asthenia

Abdominal pain

Nausea

Diarrhea

Headache

Dysgeusia

Dyspnea

Myalgia

URI

UTI

Ledermann J, et al. Lancet Oncol 2014;15:852-61; Mirza MR, et al. N Engl J Med 2016;375:2154-64; Swisher EM, et al. Lancet Oncol 2017;18:75-87; Rubraca (rucaparib) prescribing information, https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/209115s 000lbl.pdf; Lynparza (olaparib) prescribing information, https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/206162lbl.pdf; Zejula (niraparib) prescribing information, https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208447lbl.pdf.

PARP Inhibitor Adverse Reactions

Rucaparib

Grades 1-4	Grades 3/4
35%	10%
67%	23%
39%	6%
92%	1%
74%	13%
73%	5%
NR	

Niraparib

Grades 1-4	Grades 3/4
53%	21%
85%	25%
72%	35%
< 10%	
28%	1%
36%	1%
20%	9%

Olaparib

Grades 1-4	Grades 3/4
32%	8%
85%	8%
26%	6%
26%	
NR	
NR	
< 10%	

ALT = alanine aminotransferase; AST = aspartate aminotransferase; SCr = serum creatinine.

Adverse Reaction

Thrombocytopenia

Increased SCr

Increased ALT

Increased AST

Hypertension

Neutropenia

Anemia

Ledermann J, et al. Lancet Oncol 2014;15:852-61; Mirza MR, et al. N Engl J Med 2016;375:2154-64; Swisher EM, et al. Lancet Oncol 2017;18:75-87; Rubraca (rucaparib) prescribing information, https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/209115s 000lbl.pdf; Lynparza (olaparib) prescribing information, https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/206162lbl.pdf; Zejula (niraparib) prescribing information, https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208447lbl.pdf.

PARP Inhibitor Safety: Special Monitoring

Adverse Reaction	Rucaparib	Niraparib	Olaparib
MDS/AML	X	X	X
Bone marrow suppression		X	
Cardiovascular effects		X	
Pneumonitis			X

Pneumonitis: If patients present with new or worsening respiratory symptoms such as dyspnea, fever, cough, wheezing, or a radiological abnormality occurs, interrupt treatment and initiate prompt investigation. If pneumonitis is confirmed, discontinue.

MDS/AML occurred in patients exposed to drug, and some cases were fatal. Monitor patients for hematologic toxicity and discontinue if MDS/AML is confirmed.

Bone Marrow Suppression: Test complete blood counts weekly for the first month, monthly for the next 11 months, and periodically thereafter for clinically significant changes.

Cardiovascular Effects: Monitor blood pressure and heart rate monthly for the first year and periodically thereafter during treatment. Manage with antihypertensive medications as well as adjustment of the dose, if necessary.

AML = acute myeloid leukemia; MDS = myelodysplastic syndrome.

Ledermann J, et al. Lancet Oncol 2014;15:852-61; Mirza MR, et al. N Engl J Med 2016;375:2154-64; Swisher EM, et al. Lancet Oncol 2017;18:75-87; Rubraca (rucaparib) prescribing information, 2016, https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/209115s000lbl.pdf; Lynparza (olaparib) prescribing information, 2014, https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/206162lbl.pdf; Zejula (niraparib) prescribing information, 2017, https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208447lbl.pdf.

Future of PARP Inhibition Is Prostate Cancer

Trial	Study Design	Eligibility	Study Arms	Endpoint	Results
TOPARP	Phase II	Advanced CRPC	Oral olaparib	ORR	33% ORR
Kaufman, et al	Phase II	BRCA1/2-mut adv solid tumors (PC n = 8)	Oral olaparib	ORR	PFS: 9.8 vs 2.7 mo OS: 13.8 vs 7.5 mo ORR in PC: 50%
NCT01972217	Randomized phase II	mCRPC	Olaparib + abiraterone	Safety	PFS: 7.2 mo OS: 18.4 mo (ongoing study)
NCT02484404	Phase I/II	Adv/recurrent solid tumors	Anti-PD-L1 + olaparib	Safety	Recommended dose (ongoing)
KEYNOTE 365	Phase I/II	mCRPC	Anti-PD-L1 + cediranib ± olaparib Pembro + olaparib	Safety	AEs, ORR, OS (ongoing)
NCT02893917	Randomized phase II	mCRPC	Olaparib + cediranib	PFS	PFS, RR, OS (ongoing)
NCT02324998	Phase I	Int/high-risk PC	Olaparib ± placebo	Degree of PARPi	AEs (ongoing)

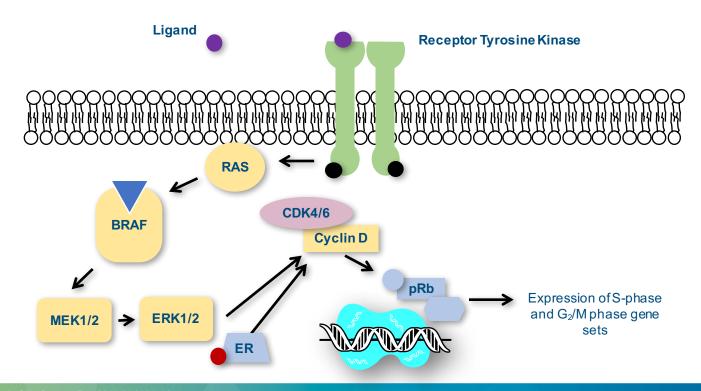
De Felice F, et al. Drug Des Devel Ther. 2017;11:547-552

Reversion Deletions in BRCA2

Patients with *BRCA*-mutated tumors develop resistance to PARP inhibitors via reversion deletions:

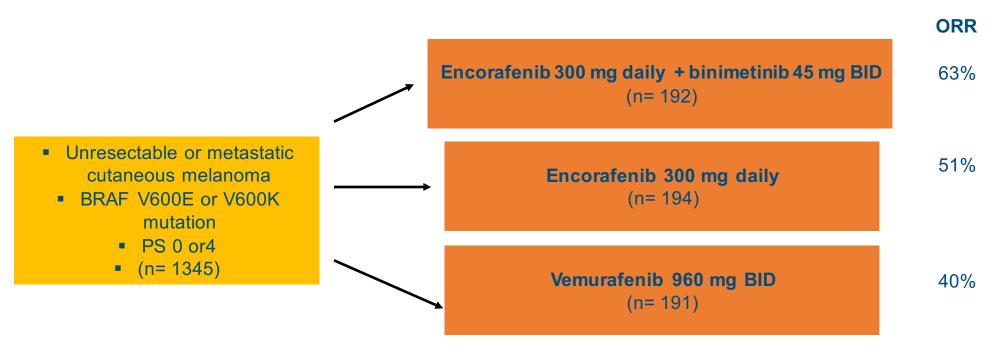
	Germline: BRCA2 heterozygous mutation		
Normal cells:	functional — pathogenic —	8 BRC repeats 8 BRC repeats	
	BMN-naive tur	nor: Loss of WT allele	
Metastasis (prior to PARPi):	pathogenic	8 BRC repeats	
	BMN-resistant	tumor: 177bp deletion restores BRCA2 function	
Metastasis (after resistance to PARPi):	functional	177 nt deletion eliminates stop gain resulting in functional in-frame protein	

Ganesan S JCO PO, 2018; DOI: 10.1200/PO.18.00001.


Other Important Regulatory Events

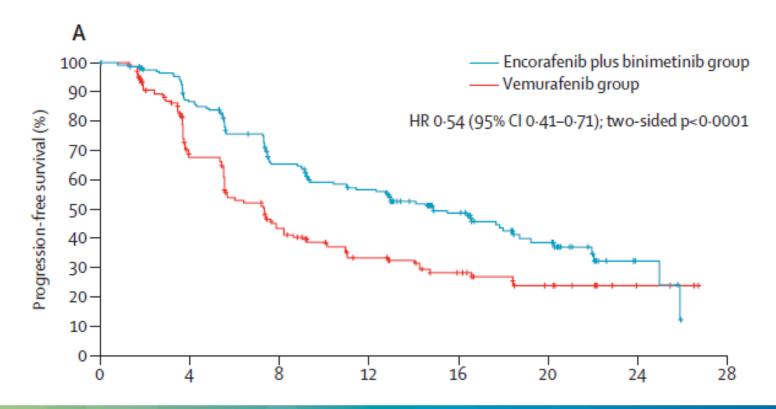
Generic	Brand	Event Description	Event Description	Date
Dabrafenib/Trametinib	Tafinlar/Mekinist	New indication	Anaplastic thyroid cancer BRAF V600E	May 4, 2018
Dabrafenib/Trametinib	Tafinlar/Mekinist	New indication	Adjuvant treatment in BRAF mutated melanoma	April 30, 2018
Alectinib	Alecensa	New indication	First-line ALK+ NSCLC	Nov 6, 2018
Afatinib	Gilotrif	New indication	First-line EGFR-mutated NSCLC	Jan 12, 2018
Osimertinib	Tagrisso	New indication	First-line EGFR-mutated NSCLC	April 19, 2018
Abiraterone	Zytiga	New indication	Metastatic high-risk castration-sensitive prostate cancer, with prednisone	Feb 7, 2018
Enzalutamide	Xtandi	New indication	Non-metastatic castrate-resistant prostate cancer	July 13, 2018

US Food and Drug Administration, Hematology/Oncology (Cancer) Approvals & Safety Notifications, https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm279174.htm. Accessed September 2018


BRAF Pathway

Adapted from VanArsdale T, et al. C*lin Cancer Res* 2015;21:2905-10.

Encorafenib Plus Binimetinib, COLUMBUS Trial



Primary endpoint: PFS of combo vs. vemurafenib

Dummer R, et al. *Lancet Oncol* 2018;19:603-15.

Encorafenib Plus Binimetinib in BRAF Mutant Melanoma

Dummer R, et al. Lancet Oncol 2018;19:603-15.

Toxicity, All Grades

Adverse Event	Encorafenib/ Binimetinib (%)	Encorafenib (%)	Vemurafenib (%)
Fatigue	29	25	32
Arthralgia	26	43	45
Pyrexia	19	15	28
Rash	15	2	29
Myalgia	14	28	19
Skin papilloma	6	9	17
Rash maculopapular	2	10	18
Keratoacanthoma	2	6	9
Alanine aminotransferase increased	11	5	8
Creatine phosphokinase	23	1	2

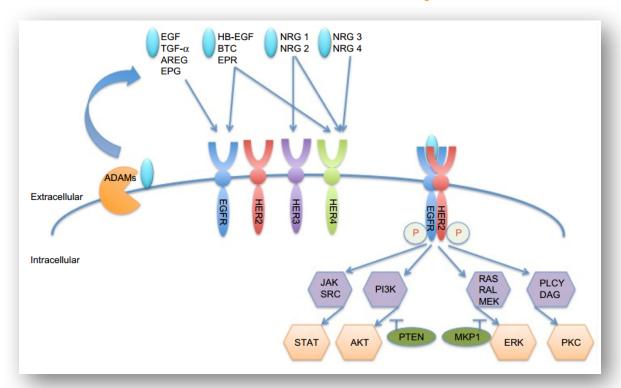
Dummer R, et al. Lancet Oncol 2018;19:603-15.

New Drug Approvals: Dec 2017 to Sept 2018

FDA-Approved Indications

First-line treatment of patients with metastatic non-small cell lung cancer (NSCLC) whose tumors have epidermal growth factor receptor (EGFR) exon 19 deletions or exon 21 L858R mutations, as detected by an FDA-approved test.

First-line treatment of patients with metastatic non-small cell lung cancer (NSCLC) whose tumors have non-resistant epidermal growth factor receptor (EGFR) mutations as detected by an FDA-approved test.


Tyrosine Kinase Inhibitors

Generic	Brand	Approval Date
Osimertinib	Tagrisso	April 18, 2018
Afatinib	Gilotrif	Jan 12, 2018

US Food and Drug Administration, Hematology/Oncology (Cancer) Approvals & Safety Notifications, https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm279174.htm. Accessed September 2018

Epidermal Growth Factor Receptor Inhibitors

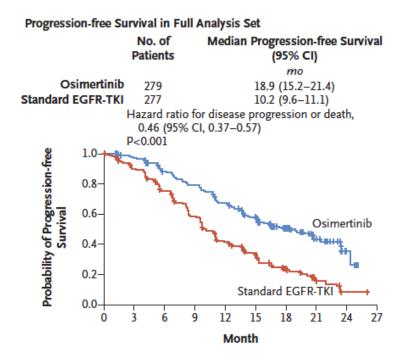
Feldinger K, et al. Breast Cancer (Dove Med Press) 2015;7:147-62; Sabari JK, et al. Onco Targets Ther 2017;10:1983-92.

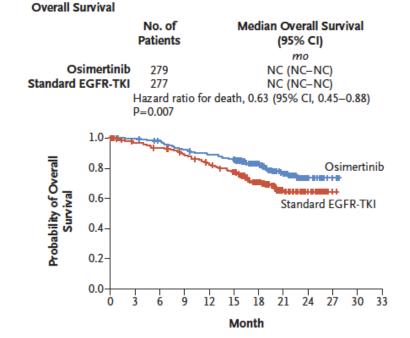
This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

FLAURA: Osimertinib in First-Line Therapy

Primary endpoint: PFS

Locally advanced or metastatic
First line
EGFR mutation:
Ex19del
L858R
Stable CNS disease


Gefitinib 250 mg daily
OR
Erlotinib 150 mg daily
Osimertinib 80 mg daily


62% Asian
>60% never-smoker
99% adenocarcinoma
Approx. 1/5 CNS mets
63% Ex19del
37% L858R

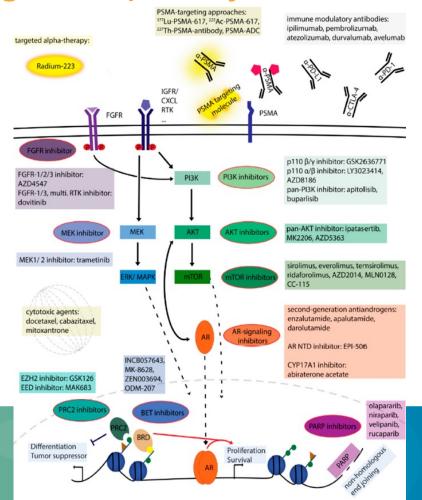
Soria JC, et al. NEJM 2018;378:113-25.

Survival Outcomes

New Drug Approvals: Dec 2017 to Sept 2018

Tyrosine Kinase Inhibitors

FDA-Approved Indications


In combination with prednisone and for metastatic high-risk castration-sensitive prostate cancer

Generic	Brand	Approval Date
Abiraterone	Zytiga	Feb 7, 2018
Apalutamide	Erleada	Feb, 14, 2018
Enzalutamide	Xtandi	July 13, 2018

In patients with non-metastatic castration-resistant prostate cancer

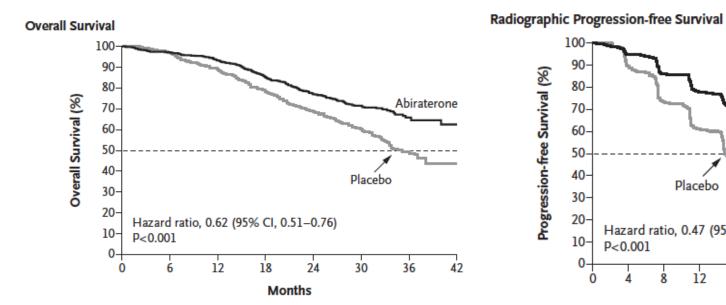
The Evolving Complexity of Prostate Therapy

Nevedomskaya E, et al. Int J Mol Sci 2018;19:1-25.

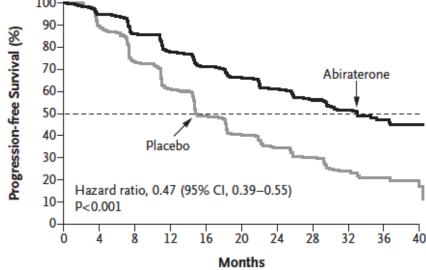
LATITUDE: Abiraterone in Castrate-SENSITIVE Prostate Cancer

Newly diagnosed
High risk: castrate-sensitive,
bone scan or metastatic
lesions
Gleason ≥ 8

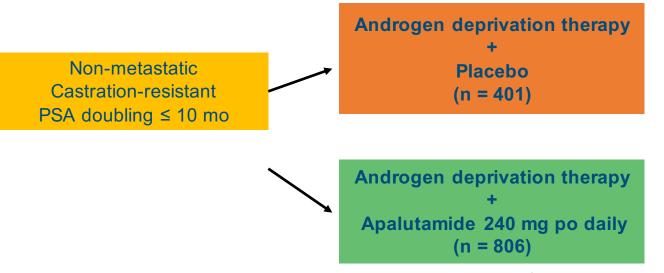
Androgen deprivation therapy
+
Placebos


Co-primary endpoint: radiographic PFS and OS

Androgen deprivation therapy +
Abiraterone 1000 mg daily/
Prednisone 5 mg daily


Fizazi K, et al. *N Engl J Med* 2017;377:352-60.

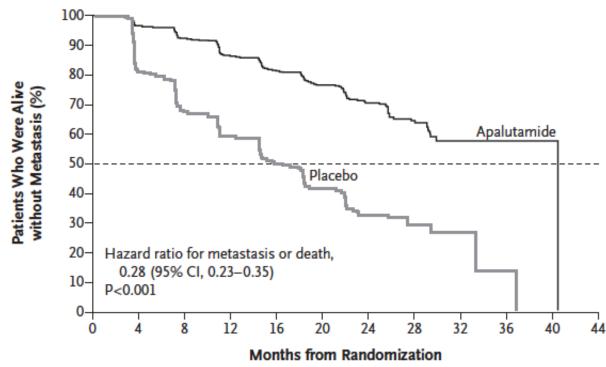
LATITIDE Efficacy Results



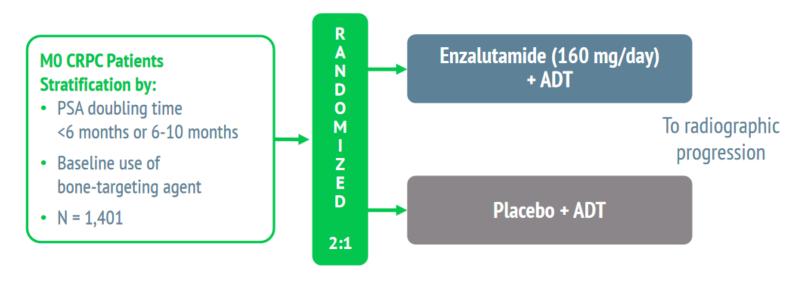
90 80-

SPARTAN: Apalutamide in Non-Metastatic Castration Resistant Prostate Cancer

Baseline characteristics
76% prostatectomy or radiation
96% GNRH agonist
73% first-line anti-androgen


Primary endpoint: metastasis-free overall survival (MFS)

Smith MR, et al. *NEJM* 2018;378:1408-18.


SPARTAN Efficacy Results

Kaplan-Meier Estimates of Metastasis-free Survival

Enzalutamide in Men with Nonmetastatic, Castration-Resistant Prostate Cancer (PROSPER)

• **Primary endpoint:** MFS = time to radiographic progression or death

ADT = androgen deprivation therapy; M0 CRPC = non-metastatic castration resistant prostate cancer; MFS = metastasis-free survival.

Hussain M, et al. *NEJM* 2018;378:2465-2474

PROSPER Results

- Median MFS 36.6 vs. 14.7 months (HR 0.29; P < .0001)
- Time to use of new antineoplastic therapy, median 39.6 vs.
 17.7 months
- OS interim analysis not mature
- Adverse events
 - Grade ≥ 3 hypertension 5% vs. 2%
 - Grade 3/4 fatigue 3% vs. 1%

Summary of Prostate Agents

- Apalutamide and enzalutamide offer an impressive 2-year median MFS improvement
- Cannot determine superiority
- OS not mature
- Adverse events well tolerated
- M0 CRPC is likely rare due to next generation imaging
- Risk of fracture may be 5–6% higher with treatment vs. placebo
 - Evaluate fall risk and bone-modifying agents

Androgen Targeted Agent Safety Profile

Enzalutamide

All Grades (%)	Grades 3/4 (%)
12	5
NR	
33	3
NR	
<5	
<5	
NR	

Abiraterone

All Grades (%)	Grades 3/4 (%)
37	20
12	3
13	2
12	4
16	6
15	5
9	3

Apalutamide

All Grades (%)	Grades 3/4 (%)
25	15
NR	
30	1
NR	
NR	
NR	
NR	

ALT = alanine aminotransferase; AST = aspartate aminotransferase

Adverse Reaction

Hypertension

Cardiac toxicity

Increased ALT

Increased AST

Bone pain

Fatigue

Anemia

Smith MR, et al. NEJM 2018;378:1408-18; Fizazi K, et al. NEJM 2017;377:352-60; Hussain M, et al. NEJM 2018;378:2465-74.

Cabozantinib for First-Line Treatment of Advanced Renal Cell Carcinoma of Poor–Intermediate Patients (CABOSUN)

Advanced RCC (N=150)

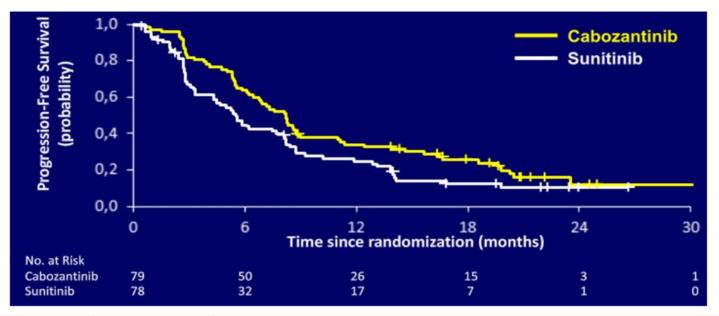
- Clear cell component
- Measurable disease
- No prior systemic therapy
- ECOG PS 0-2
- IMDC intermediate or poor risk groups

Stratification:

- IMDC risk group¹: intermediate, poor
- Bone metastases: yes, no

Cabozantinib 60 mg qd orally (6 weeks cycles)

Randomization 1:1
No cross-over allowed


Sunitinib 50 mg qd orally (4 weeks on/2 weeks off) Tumor assessment by RECIST 1.1 every other cycle

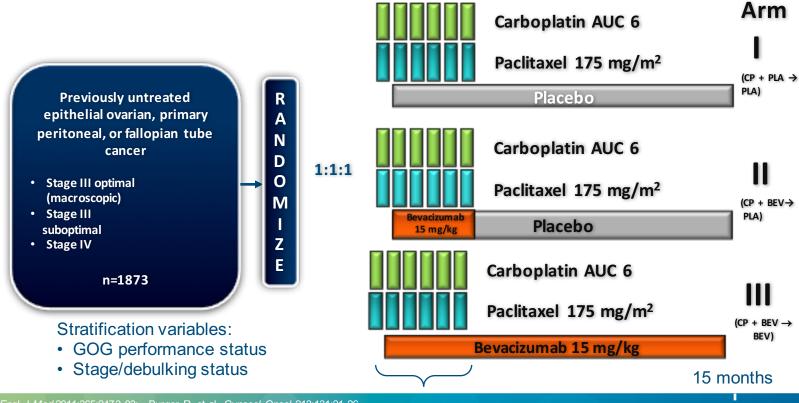
Treatment until disease progression or intolerable toxicity

Choueiri TK, et al. JCO 2017;35:591-597

CABOSUN Results

Arm	PFS Events	Median PFS (95% CI), mo	HR (95% CI)*
Cabozantinib	64	8.2 (6.2, 9.0)	0.69 (0.48-0.99)
Sunitinib	61	5.6 (3.4, 8.1)	P-value (one sided) = 0.012

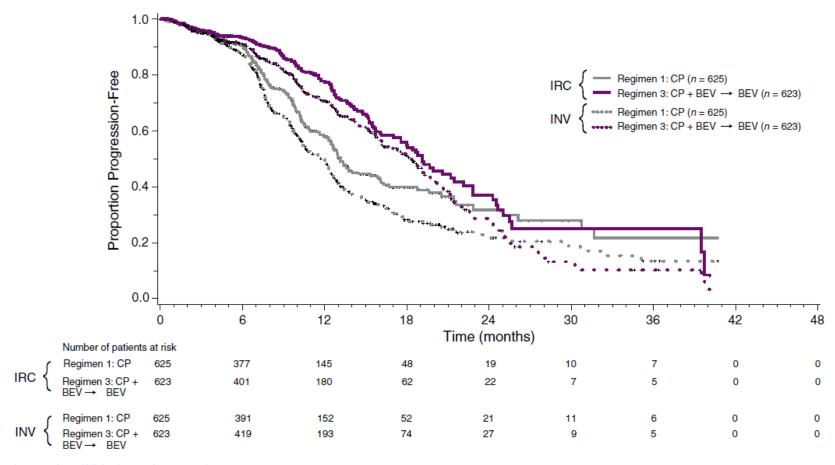
Choueiri TK, et al. JCO 2017;35:591-597.



	Cabozantinib (N=78)		Sunitinib (N=72)	
Preferred Term, %	ALL Grades	Grade 3/4	All Grades	Grade 3/4
Any adverse events*	99	65	99	68
Fatigue	86	6	82	15
Hypertension	81	28	68	22
Diarrhea	73	10	54	11
AST increased	62	3	32	3
ALT increased	55	5	28	0
Anorexia	47	5	32	0
PPE	42	8	33	4
Dysgeusia	41	0	29	0
Thrombocytopenia	40	1	63	11
Oral mucositis	36	5	29	6
Anemia	33	1	46	1
Nausea	32	3	39	4
Weight loss	32	4	17	0
Neutropenia	15	0	35	4
Leukopenia	12	0	35	3

^{*}Events reported in at least 30% of patients in either study group; PPE, palmar-plantar erythrodysesthesia

GOG-0218 Study Schema



Burger R, et al. N Engl J Med 2011;365:2473-83; Burger R, et al. Gynecol Oncol 213;131:21-26.

Cytotoxic (6 cycles)

Maintenance (16 cycles)

IRC = independent review; INV = investigator review.

2018

JADPRO

THE ANNUAL APSHO MEETING

ASCO 2018 Update

- HR 0.774 for stage IV patients
- Median OS stage IV
 - Bevacizumab 34.5 months vs. control 32.6 months
- Potential benefit for FIGO stage IV disease

Summary

The pharmacology of new oncology medications approved in 2017–2018 are mostly for additional indications! We are in the era of incremental improvement.

- CDK4/6 inhibitors now represent the standard of care in HR+, HER2- first line
- PARP inhibitors for breast cancer with germline BRCA
- Immunotherapy CE will continue for a while!
- Updates to TKIs are used for NSCLC and RCC
- New approvals for immunotherapy and BRAF agents in the adjuvant setting
- Prostate cancer is becoming more complex...
- Bevacizumab in ovarian first line

This has been a SMARTIE presentation.

SMARTIE participants, you can now go to smartie2018.com or visit the SMARTIE booth to answer the post-session questions for this presentation.

If you would like more information about this program, please ask a conference staff member or visit the SMARTIE booth.

