

Clinical Advances and Case Studies in Immune Checkpoint Inhibitors in Oncology

Mismatch Repair Deficient (dMMR) and Microsatellite Instability-High (MSI-H) Tumors

Program Chairs

Brianna Hoffner
MSN, ANP-BC, AOCNP®
University of Colorado
Cancer Center

Laura J. Zitella
MS, RN, ACNP-BC, AOCN®
Stanford Health Care

Faculty

Whitney Lewis
PharmD, BCOP
The University of Texas MD
Anderson Cancer Center

Faculty Financial Disclosures

- Ms. Hoffner has received consulting fees/honoraria from Abbott, Array BioPharma, and Merck.
- Ms. Zitella has served on the advisory board for Array Biopharma and has equity interests/stock options in Kite Pharma.
- Dr. Lewis has nothing to disclose.

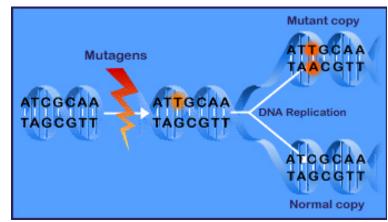
Planning Committee Financial Disclosures

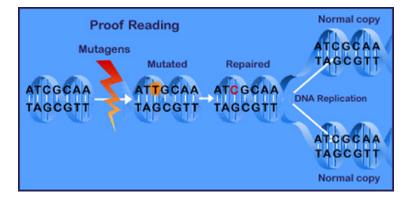
- Moshe C. Ornstein, MD, MA, Cleveland Clinic Taussig Cancer Institute (Reviewer) has served as a consultant for Pfizer and Eisai.
- Dorothy Caputo, MA, BSN, RN (Lead Nurse Planner) has nothing to disclose.
- Annenberg Center for Health Sciences at Eisenhower
 - John Bayliss, VP, Business Development, spouse is an employee of Amgen, Inc.; Charles Willis, Director, Continuing Education, consults for Pfizer Inc.; all other staff at the Annenberg Center for Health Sciences at Eisenhower have no relevant commercial relationships to disclose.
- Alana Brody, Lynn Rubin, and Patti McLafferty (Harborside Medical Education) have nothing to disclose.
- Sandy Leatherman, Annamarie Luccarelli, and Jessica Tamasi (APSHO) have nothing to disclose.
- Claudine Kiffer and Annie Yueh (Harborside) have nothing to disclose.

This activity is supported by educational grants provided by AstraZeneca and Bristol-Myers Squibb.

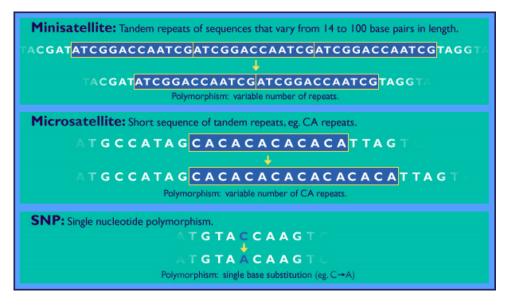
Learning Objectives

- Differentiate between early and late adverse effects associated with immunotherapeutic agents.
- Recognize the differences between immunotherapeutic agents and chemotherapeutic agents: mechanisms of action, adverse effects, and toxicity management.
- Summarize data on currently available immunotherapeutic agents as they relate to durable treatment responses.
- Explain the utility of biomarker testing in selecting patients for immunotherapy and in predicting clinical outcomes.

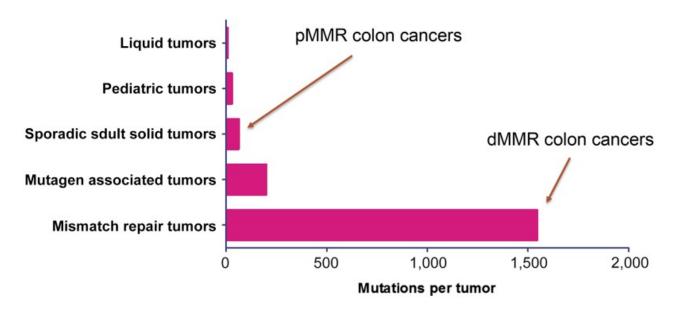

Goals


- Summarize data on currently available immunotherapeutic agents for mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) tumors
- Identify appropriate management of immune-related hypothyroidism

Mismatch Repair Genes (MMR): The "spell-checker" for DNA


- Mismatch repair genes are errorcorrection systems that check DNA for damaged or mismatched base pairs
- Mismatch repair deficient (dMMR)
 cells lack ability to repair mistakes in
 DNA so they acquire multiple DNA
 mutations

Microsatellite Instability

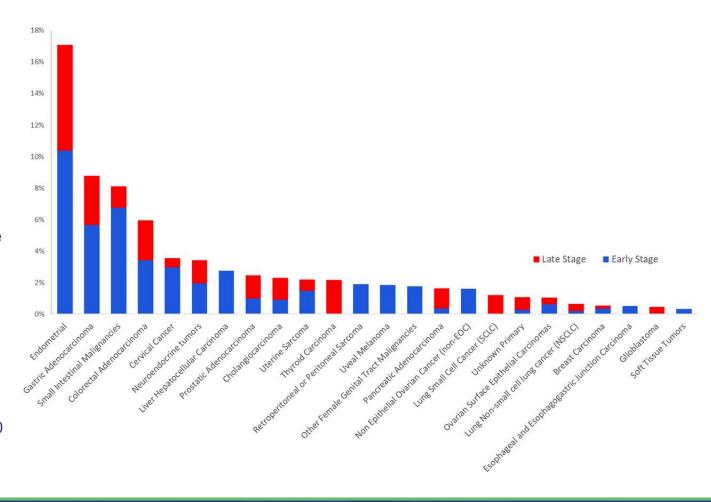


- Microsatellites are units of 1–6 nucleotides tandemly repeated multiple times throughout the genome
- The repetitive nature of the microsatellite sequences make them vulnerable to errors during DNA replication
- Mismatch repair (MMR) machinery detects and repairs mistakes in the microsatellites
- In dMMR cells, the microsatellite errors go unrepaired and cause "microsatellite instability" (MSI)
- Microsatellite instability-high (MSI-H) tumor cells have at least 30% more DNA alterations than normal cells

dMMR = mismatch repair deficiency.

MMR-deficient Cells Have More Than 1000 Mutations, Compared With 50–100 in a Typical Cancer Cell

- These mutations may give rise to tumor "neoantigens"
- Since these neoantigens are unique to the tumor, they can potentially be recognized as "nonself" molecules by the immune system
- MSI-H tumors are highly infiltrated with T cells including cytotoxic T lymphocytes (CTLs)
 - Most likely responding to the tumor neoantigens


Why Doesn't the Immune System Eradicate dMMR/MSI-H Tumors Since There Is a High Level of Immunogenicity?

- "Adaptive resistance" in which the cytotoxic T-cell response is countered by tumor-induced immune suppressive checkpoints that protect the tumor from killing
- Escape mechanisms include upregulation of
 - PD-1, PD-L1, CTLA-4, lymphocyte activation gene 3, and IDO
- This supports the use of checkpoint blockade inhibitor therapy to reverse tumor immune protection
- MSI is a common mutation driver in many cancers and is emerging as a predictive biomarker for responsiveness to immune checkpoint inhibition

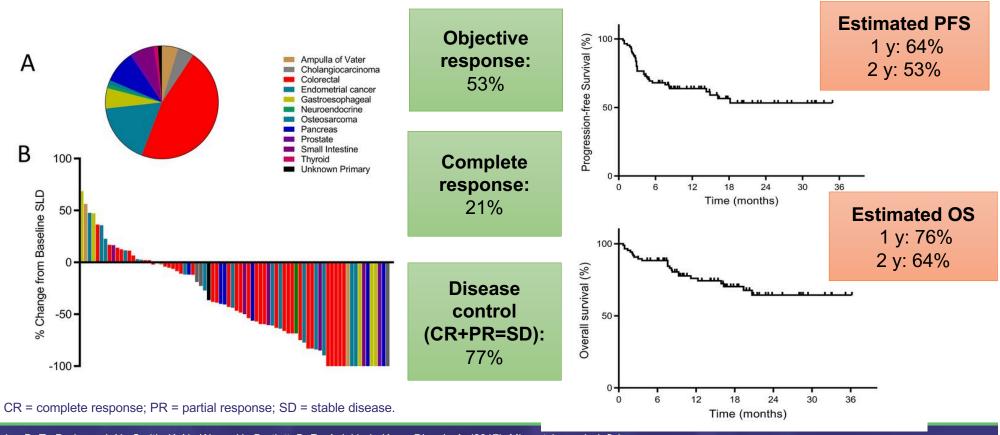
Mismatch Repair Deficiency (dMMR) Across 12,019 Cases of Cancer

- 24/32 tested tumor types were dMMR
- More common in early stage tumors
- Incidence of dMMR
 - 8% of stage I to stage III cancers
 - 4% of stage IV cancers
 - This represents roughly 40,000 annual stage I–III and 20,000 stage IV diagnoses in the United States alone

Microsatellite Instability-High (MSI-H) Colorectal Cancer

- Microsatellite instability (MSI) is present in 10%–20% of colorectal cancer (CRC) cases
 - 15% of early stage CRC
 - 4% of metastatic CRC
 - Hereditary nonpolyposis colorectal cancer (HNPCC), also known as Lynch Syndrome (LS) is characterized by MSI
 - The associated germline mutations in LS are seen in one of the following MMR genes; MLH1, MSH2, HSH6, PMS2.
 - However, nearly two-thirds of MSI CRC are sporadic in nature and are associated with an epigenetic modification that leads to the inactivation of the *MLH1* gene.
- NCCN recommends testing all CRC specimens for MMR or MSI
- MSI-H CRC presents with a distinct clinic-pathologic pattern
 - Proximal colon location in younger patients
 - Tend to be early stage
 - Poorly differentiated tumors that exhibit an abundance of tumor infiltrating lymphocytes (TIL)
 - Better overall prognosis compared to patients with microsatellite stable disease (MSS or pMMR).

NCCN = National Comprehensive Cancer Network

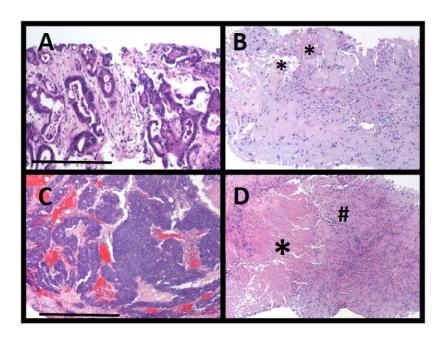


Pembrolizumab Approval for dMMR/MSI-H Tumors

- First "disease-agnostic" approval and represents major paradigm shift to approve cancer drug based on the presence of a specific biomarker
- FDA approval based on data from five single-arm multicohort trials (n = 149)
 - KEYNOTE-016 (n = 58), KEYNOTE-164 (n = 61), KEYNOTE-012 (n = 6), KEYNOTE-028 (n = 5), and KEYNOTE-158 (n = 19)
 - Pembrolizumab at 200 mg q3w or 10 mg/kg q2w until unacceptable toxicity or either symptomatic disease progression, rapid progression requiring urgent intervention, or progression with a performance status decline. Maximum length of treatment was 24 months.
- Objective response rate: 39.6% (95% CI = 31.7%–47.9%)
 - 48 partial responses and 11 complete responses
 - 78% of responders had responses of > 6 months
- Recommended pembrolizumab dose for this indication
 - Adults: 200 mg IV over 30 minutes every 3 weeks until disease progression, unacceptable toxicity, or up to 24 months in patients without disease progression.

Pembrolizumab in 12 Different Tumor Types With Mismatch Repair Deficiency (n = 78)

Le, D. T., Durham, J. N., Smith, K. N., Wang, H., Bartlett, B. R., Aulakh, L. K., ... Diaz, L. A. (2017). Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science (New York, N.Y.), 357(6349), 409–413. https://doi.org/10.1126/science.aan6733



Biopsies of Residual Radiographic Disease: Evidence Of Cancer in 60% of Cases

- 20 patients with residual radiographic disease had biopsies
 - 12 patients (60%) had negative biopsies
 - No evidence of tumor cells
 - There were varying degrees of inflammation, fibrosis and mucin, consistent with an ongoing immune response
 - 8 cases showed residual tumor cells
- The absence of cancer cells in post-treatment biopsies was a strong predictor of progression-free survival
 - Median PFS: 25.9 months vs. 2.9 months for biopsies with evidence of residual tumor
 - Median OS has not yet been reached in patients with negative biopsies

Pre-Treatment and Post-Treatment Biopsies

- (A) Pre-treatment core biopsies of metastatic colonic adenocarcinoma
- (B) Post-therapy demonstrating focal necrosis
- (*) mild chronic inflammation, early hyalinizing fibrosis, and resolving granulation tissue.
- (C) Pre-treatment biopsy of metastatic colonic adenocarcinoma
- (D) Post-treatment biopsy shows prominent necrosis
- (*) loose granuloma formation
- (#) focal fibrosis, and moderate chronic inflammation. No malignant epithelial (neoplastic) colon cancer cells were identified.

Pembrolizumab Monotherapy: Adverse Effects

Any grade: 74%

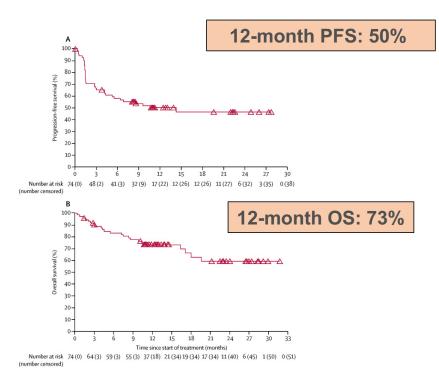
Grade 3/4: 20%

Event-no. (%)	All Grades N=84	Grade 1 or 2	Grade 3 or 4	
Any	62 (74%)	62 (74%)	17 (20%)	
Generalized Symptoms				
Fatigue	21 (25%)	19 (23%)	2 (2%)	
Flu-like symptoms	6 (7%)	6 (7%)	0 (0%)	
Infection	5 (6%)	5 (6%)	0 (0%)	
Gastrointestinal				
Diarrhea/colitis	19 (23%)	14 (17%)	5 (6%)	
Nausea/vomiting	11 (13%)	10 (12%)	1 (1%)	
Gastritis/ulcer	4 (5%)	3 (4%)	1 (1%)	
Transaminitis	4 (5%)	4 (5%)	0 (0%)	
Pancreatitis/Hyperamylasemia	5 (6%)	0 (0%)	5 (6%)	
Endocrine Disorders				
Thyroid disease/hypophysitis	18 (21%)	18 (21%)	0 (0%)	
Arthritis/arthralgias	14 (17%)	12 (14%)	2 (2%)	
Hematologic				
Anemia	6 (7%)	4 (5%)	2 (2%)	
Thrombocytopenia	4 (5%)	3 (4%)	1 (1%)	
Rash/pruritus	30 (36%)	29 (35%)	1 (1%)	
Neuropathy	5 (6%)	4 (5%)	1 (1%)	
Acute kidney injury	4 (5%)	3 (4%)	1 (1%)	

Le, D. T., Durham, J. N., Smith, K. N., Wang, H., Bartlett, B. R., Aulakh, L. K., ... Diaz, L. A. (2017). Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. *Science (New York, N.Y.)*, 357(6349), 409–413. https://doi.org/10.1126/science.aan6733

Phase III KEYNOTE-177 (NCT02563002) Is Ongoing

- International, randomized, open-label, phase III study of pembrolizumab vs. standard-of-care (SOC) chemotherapy in first-line MMR-deficient or MSI-high metastatic CRC
- ~270 patients will be randomly assigned 1:1 to receive either pembrolizumab at 200 mg every 3
 weeks or investigator's choice of SOC chemotherapy (mFOLFOX6 or FOLFIRI alone or in
 combination with bevacizumab or cetuximab, chosen before randomization)
- Treatment is to continue until progressive disease (PD), unacceptable toxicity, patient/investigator decision, or completion of 35 cycles (pembrolizumab only)
- Response is to be assessed every 9 weeks per RECIST v1.1 by central imaging vendor review and per RECIST adapted for immunotherapy response patterns
- Eligible patients may continue pembrolizumab beyond initial RECIST-defined progression
- Patients in the SOC arm who have PD and meet crossover criteria may be eligible to receive pembrolizumab for up to 17 treatment cycles.
- The primary end point is PFS per RECIST v1.1; secondary end points include OS and ORR.

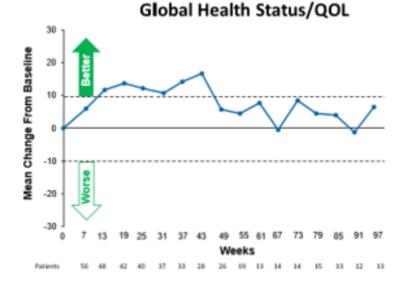

Nivolumab

- FDA approved for
 - Adult and pediatric (12 years and older) patients with microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) metastatic colorectal cancer that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan
- Based on data from CheckMate 142
- Dose: 240 mg IV over 30 minutes every 2 weeks until disease progression or unacceptable toxicity

CheckMate 142: Nivolumab Monotherapy for dMMR/MSI-H Metastatic Colorectal Cancer

- 74 patients
- Nivolumab at 3 mg/kg q2wk
- Median follow-up: 12 months
 - Objective response: 31%
 - Disease control: 69%
 - Median time to response: 2.8 months (range 1.4–3.2)
 - Median duration of response: not reached
 - Median PFS: 14.3 months
- Responses were seen irrespective of PD-L1 status, Lynch syndrome, or KRAS and BRAF mutations.

dMMR/MSI-H = DNA mismatch repair deficient/microsatellite instability-high

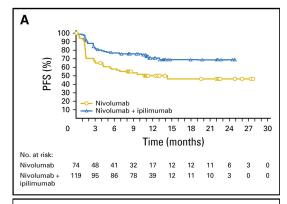


CheckMate 142: Patient-Reported Outcomes and Adverse Effects

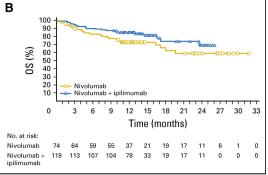
Any grade: 70%

Grade 3/4: 20%

- Most adverse events were easily managed
- As early as week 13, clinically meaningful improvements in quality of life



European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30



CheckMate 142: Nivolumab/Ipilimumab for dMMR/MSI-H Metastatic Colorectal Cancer

- 119 patients
- Nivolumab at 3 mg/kg plus ipilimumab at 1 mg/kg once every 3 weeks (four doses) followed by nivolumab at 3 mg/kg once every 2 weeks
- Median follow-up: 13.5 months
 - Objective response: 55%
 - Disease control: 80%
 - Median time to response: 2.8 months (range 1– 14)
 - · Median duration of response: not reached
 - Median PFS: not reached

12-month PFS Nivo: 50% Nivo/lpi: 71%

12-month OS Nivo: 73% Nivo/lpi: 85%

dMMR/MSI-H = DNA mismatch repair deficient/microsatellite instability-high

CheckMate 142: Nivolumab/Ipilimumab Cohort Adverse Events

 Combination therapy had similar adverse events, but more likely to be grade 3/4 than monotherapy

• Any grade: 73%

• Grade 3/4: 32%

 13% of patients discontinued therapy due to adverse events

 QOL improved with combination therapy similar to monotherapy

TRAE	Grade 1-2	Grade 3	Grade 4
Any TRAE	49 (41)	32 (27)	6 (5)
Diarrhea*	24 (20)	2 (2)	0
Fatigue*	19 (16)	2 (2)	0
Pruritus*	18 (15)	2 (2)	0
Pyrexia*	18 (15)	0	0
Increased AST*	8 (7)	9 (8)	0
Hypothyroidism*	15 (13)	1 (1)	0
Nausea*	14 (12)	1 (1)	0
Increased ALT*	6 (5)	8 (7)	0
Rash*	11 (9)	2 (2)	0
Hyperthyroidism*	13 (11)	0	0

TRAE = treatment-related adverse event.

Case Study

- EN is a 54-year-old male with CRC (RAS and BRAF wild type), metastatic to liver and lungs. ECOG PS 1, MSI-high disease, no family history of hereditary nonpolyposis CRC, and negative germline testing for Lynch syndrome.
- Treated with FOLFOX + bevacizumab until progression, then FOLFIRI + panitumumab until progression.
- Most recent scan shows progression in liver and lung.
- He starts treatment with pembrolizumab at 200 mg IV over 30 minutes every 3 weeks.

Audience Response Question

EN is seen in clinic for cycle 5 of pembrolizumab. He mentions that he has been extremely fatigued. TFTs: TSH 23 mIU/L (high) and T4 0.2 μg/dL (low) consistent with primary hypothyroidism. What do you recommend to treat autoimmune hypothyroidism?

- A. Treat autoimmune hypothyroidism with prednisone 1 mg/kg for 1 week then taper over 1– 2 months
- B. Treat with thyroid hormone replacement and expect that thyroid function will recover after completion of pembrolizumab
- C. Treat with thyroid hormone replacement; thyroid function unlikely to recover so anticipate lifelong therapy
- D. Repeat thyroid function tests in 4–6 weeks. If TSH still elevated, treat with thyroid hormone replacement
- E. Unsure

Symptoms of Thyroid Disorders

Hyperthyroidism

- Anxiety
- Irritability
- Increased bowel movements
- Diaphoresis
- Palpitations
- Weight loss

Hypothyroidism

- Fatigue
- Joint pain
- Constipation
- Intolerance to cold
- Decreased heart rate
- Hair loss

Management of Immune-Related Hypothyroidism

Monitor TSH and free T4 every 4–6 weeks						
Asymptomatic subclinical hypothyroidism	TSH 4 to < 10 Normal free T4	Repeat TSH, free T4 in 4-6 weeks	Continue IO			
	TSH > 10 Normal free T4	Consider thyroid hormone replacement therapy or repeat TFTs in 4 weeks and if persists > 4 weeks, thyroid hormone replacement	Continue IO			
Symptomatic subclinical hypothyroidism	TSH > 4 Normal free T4	Thyroid hormone replacement	Continue IO			
Primary hypothyroidism	TSH > 10 Low free T4	Thyroid hormone replacement Consider endocrine consult	Continue IO			
Central hypothyroidism	Normal or low TSH Low free T4	Thyroid hormone replacement Consider central hypothyroidism Consider endocrine consult	Continue IO			

If required, thyroid hormone therapy should be initiated as an initial full replacement (1.6 mcg/kg/d) or as partial replacement in frail/elderly patients (25–50 μ g/d). Titrate dose in gradual increments based on TSH assessments every 4–8 weeks to target goal of normal TSH.

Case Study (cont.)

- Initiate levothyroxine at 1.6 µg/kg orally daily
- Repeat TSH in 6 weeks and titrate levothyroxine to normal serum TSH
- Consider referral to endocrinology
- Counsel EN that this may not be reversible and to anticipate lifelong thyroid replacement therapy
- OK to continue treatment with pembrolizumab

Audience Response Question

EN is seen in clinic for cycle 5 of pembrolizumab. He mentions that he has been extremely fatigued. TFTs: TSH 23 mIU/L (high) and T4 0.2 μg/dL (low) consistent with primary hypothyroidism. What do you recommend to treat autoimmune hypothyroidism?

- A. Treat autoimmune hypothyroidism with prednisone 1 mg/kg for 1 week then taper over 1– 2 months
- B. Treat with thyroid hormone replacement and expect that thyroid function will recover after completion of pembrolizumab
- C. Treat with thyroid hormone replacement; thyroid function unlikely to recover so anticipate lifelong therapy
- D. Repeat thyroid function tests in 4–6 weeks. If TSH still elevated, treat with thyroid hormone replacement
- E. Unsure

Immune-Related Hyperthyroidism

- Thyrotoxicosis may be detected in routine blood work or due to symptoms
 - Low TSH and elevated free T4
 - Occurs approximately 3–6 weeks after the first immunotherapy dose
 - Thyroid peroxidase (TPO) antibody and/or thyroid-stimulating hormone receptor antibody (TRAb) generally positive
- May treat symptoms temporarily with β-blocker therapy
 - e.g., Propranolol at 10–20 mg q4–6 hrs prn, atenolol, metoprolol
- Monitor thyroid function every 2 to 3 weeks after diagnosis to catch transition to hypothyroidism
 - Thyrotoxicosis usually resolves spontaneously within ~4 weeks
 - Typically followed by hypothyroidism requiring thyroid hormone replacement (usually lifelong)

Conclusion

- The use of immune checkpoint inhibitors to treat dMMR/MSI-H tumors is emerging as an effective strategy with durable responses
- dMMR/MSI-H tumors may be particularly susceptible to immune checkpoint therapy due to:
 - High mutation rate: giving rise to tumor-specific neoantigens that the immune system can target
 - High concentration of infiltrating cytotoxic T cells
- Unlike other tumors, responses did not correlate with PD-L1 status
- The side effect profile is similar to other populations with mostly low grade manageable toxicities

