Advances in Managing Acute Kidney Injury: Improving Outcomes for Patients Treated With High-Dose Methotrexate

Case Study 1: HDMTX-Induced AKI in Osteosarcoma

Panelists

Nancy M. Nix, PharmD, BCPS, BCOP

University of Georgia College of Pharmacy Disclosures: Speakers Bureau: Coherus BioSciences; Advisory Boards: Bristol-Myers Squibb,

Genentech, Puma, Sandoz

Kristi Posey, PA

University of Texas MD Anderson Cancer Center Disclosures: Nothing to disclose

This activity is supported by an unrestricted educational grant from BTG International.

Case Study 1 HDMTX-Induced AKI in Osteosarcoma

Learning objectives:

- Plan strategies to monitor patients treated with high-dose methotrexate (HDMTX) for development of acute kidney injury (AKI)
- Identify patient and disease characteristics that trigger treatment with glucarpidase
- Formulate plans to treat AKI caused by HDMTX safely and effectively based on best available evidence and recent guidelines

HDMTX-Induced AKI

- HDMTX is used in several regimens for patients with solid tumors and hematologic malignancies.
- Delayed MTX clearance can lead to significant morbidity and mortality.
- AKI develops in up to 12% of patients after treatment with HDMTX, with a 6% mortality rate.^{1,2}

- 1. Howard SC, et al. Oncologist. 2016;21:1471-82.
- 2. Ramsey LB, et al. Oncologist. 2018;23:52-61.

Osteosarcoma and HDMTX

- Primary cancer of bone, often high grade with lung metastasis
- More common among children and young adults
- Predisposition to distal femur, proximal tibia, and proximal humerus
- HDMTX is part of first-line combination chemotherapy for children and active adjuvant therapy for adults
- HDMTX-induced AKI occurs in ~1.8% of patients with osteosarcoma treated on clinical trials, with a 4.4% mortality rate¹

1. Widemann BC, et al. *Cancer.* 2004;100(10):2222-32.

Identifiable Risk Factors

- Baseline chronic kidney disease and/or extensive comorbidities
- Pretreatment volume depletion
- Pre-therapy acidic urine
 - Alkalinization increases MTX solubility 10x with a pH increase from 6 to 7
- Drug interactions
 - Probenecid, salicylates, sulfisoxazole, penicillins, and nonsteroidal anti-inflammatory agents
- Heavy neoadjuvant or palliative pretreatment

Pretreatment Strategies

- Proper pre-treatment counseling/chemotherapy education
- Oral hydration
- Urine testing and sodium bicarbonate
- Leucovorin doses at home, starting 24 hours after initiating MTX
- Timely lab draws (peak and subsequent)
- Warning symptoms: fever, chills, nausea, vomiting

- 31-year-old female patient presenting with right proximal tibia pain and blastic lesion with periosteal signs on x-ray
- Diagnosed with localized fibroblastic osteosarcoma
- Neoadjuvant systemic therapy initiated:
 - Doxorubicin 75 mg/m² IV continuous infusion over 72 hours
 - Cisplatin 120 mg/m² over 4 hours IV
 - Four cycles with planned aggressive IV fluids 250 mL/hr

- Response assessment every 2 cycles with repeat PET/CT scan with IV contrast noting positive response
- Undergoes radical resection and endoprosthetic reconstruction with negative margins and 70% necrosis
- Adjuvant treatment strategy: HDMTX alternating with singleagent high-dose ifosfamide

Creatinine

- Pre-treatment baseline: 0.4-0.5 mg/dL
- Post-treatment: 0.85 mg/dL
- HDMTX prep includes pre-therapy counseling
- Proceeds with HDMTX 10 mg/m² IV over 4 hours
- MTX peak: 1726.54 µM with associated fatigue
- MTX 24 hours: 263.76 µM
- Experiences lethargy and worsening altered mental status

Identifying Emerging Toxicity

- Expected MTX level after 24 hours: <50 μM¹
- Employ a team approach: triage nurse, advanced practice provider, attending physician, and pharmacist
- Combine interpretation of laboratory and clinical assessment to make rapid decisions

- Patient instructed to report to emergency department
- Pharmacist alerted to initiate approval for glucarpidase
- Total time for treatment decisions: <5 minutes

Emergent Rescue Interventions

- Alkaline fluids: 125 mL/hr increasing to 200 mL/hr
- Leucovorin: 100 mg every 6 hours
- Glucarpidase: 50 units/kg
- When initiating rescue interventions, remember:
 - Leucovorin: less effective for high MTX concentrations
 - Glucarpidase: rapid metabolism of >95% within 15 minutes
 - Dialysis-based methods relatively ineffective at reducing plasma MTX concentrations

Glucarpidase

- Ensure your institution stocks glucarpidase or has a plan to access it rapidly
- Administration should occur within 48-60 hours after HDMTX initiation
 - Life-threatening toxicities may not be preventable beyond this point

Interpreting Lab Values

- MTX level
 - Considering starting glucarpidase if at:
 - 24 hours = >120 μ M (1-8 g/m² MTX) or >50 μ M (8-12 g/m² MTX)
 - 36 hours = >30 µM
 - 42 hours = >10 µM
 - 48 hours = >5 μ M + creatinine increase
- Creatinine
 - Creatinine clearance may lag an unexpected identified high MTX level
 - >50% from baseline 24-36 hours from start = 0.99 specificity of delayed MTX clearance

Ramsey LB, et al. Oncologist. 2018;23:52-61.

- Sodium acetate: 125 mL/hr, increased to 200 mL/hr
- Leucovorin: 100 mg every 6 hours
- Glucarpidase: 3000 units IV (50 unit/kg)
- Labs
 - Creatinine peak = 1.05 mg/dL
 - AST/ALT = normal limits
 - MTX clearance of <0.1 on day 9

Toxicities of Delayed MTX Clearance

- Worsened renal function
- Exacerbations of non-renal adverse events:
 - Myelosuppression
 - Mucositis
 - Dermatologic toxicity
 - Hepatotoxicity
- Expedited treatment allows for optimal MTX clearance and resolution of symptoms and baseline creatinine

- Discharged on day 5
 - Resolving oral ulcers
 - Decreasing creatinine level
 - MTX level = 0.14
- New post-HDMTX injury baseline creatinine = 0.71
- Further HDMTX cycles administered inpatient with close monitoring without delayed clearance noted

Summary of Key Points

- Provide pretreatment counseling on urine testing, leucovorin doses, lab draws, alkaline IV fluid use, and warning symptoms of AKI.
- Risk factors for HDMTX-induced AKI include baseline chronic kidney disease, extensive comorbidities, pretreatment volume depletion, acidic urine, and identifiable drug interactions.
- Working as a team to monitor patients for delayed HDMTX clearance and emergent intervention is critical to timely treatment decision making.
- In addition to using consensus guidelines:
 - Correlate inappropriately high levels of MTX to clinical findings and lab anomalies
 - Monitor patients until <0.1 MTX clearance